**IM Certified**^{®} Blog

^{®}Blog

## The IM 6–8 Math Curriculum Changed My Math Methods Experience

By Anna Polsgrove When I first started the Math Methods course at University of California, Irvine, all of my ideas on how to learn math took a complete 180. During the first two months, a million questions swirled in my...

## Fun With Zooming Number Lines in Grade 8

By Charles Larrieu Casias The number line is an anchor representation that threads through the entire middle school curriculum. For this blog post, I want to focus on a creative use of the number line in grade 8 to explore...

## Untangling fractions, ratios, and quotients

By William McCallum In everyday language, $\frac{a}{b}$, $a\div b$, and $a : b$ are all different manifestations of a single fused notion. Here, for example are the mathematical definitions of fraction, quotient, and ratio...

## On Similar Triangles

By Ashli Black The fact that a line has a well-defined slope—that the ratio between the rise and run for any two points on the line is always the same—depends on similar triangles. (p.12, 6–8 Progression on Expressions and...

## NCSM and NCTM 2018 Roundup

It was great to see so many of you at NCSM and NCTM. If we missed you, or you weren’t able to attend, read our NCSM and NCTM round-up below. We enjoyed the conversations we had with those of you that are using the IM 6–8...

## Time to Noodle

By Kate Nowak This task is the first part of the culminating lesson of unit 2 in grade 8, which is about dilations and similarity. (You will need to create a free teacher account to open the link.) It is a variation on the...

## What is an instructional routine?

By William McCallum and Kate Nowak People use routines for all kinds of things. Routines give structure to time and interactions. People like structure. When a child comes home from school, there might be a routine. She...

## Using Math Routines to Build Number Sense in First Grade

By Allison Van Voy When I started teaching four years ago, I had no idea how important number sense was to a student’s math understanding. I was fresh out of college, brand new to teaching, and number sense was not a...

## Sometimes the Real World Is Overrated: The Joy of Silly Applications

By Charles Larrieu Casias One of the cool things about math is that it can provide powerful new ways of seeing the world. Just for fun, I want you to open up this lesson from the grade 8 student text. Take a quick skim....

## Instructional Materials Matter: Interpreting Remainders in Division

By Jody Guarino We know instructional materials play a key role in student learning experiences but how do we ensure our students are learning from coherent high-quality instructional materials that engage them in critical...

## Adapting Curriculum For Students to Know, Use and Enjoy Fractions

By Melissa Greenwald You know it is time for a change when half of the students in class are lost by the third lesson of a new unit. I teach third grade in a charter school in Philadelphia. We use Go Math! and each year I...

## Learning Goals and Learning Targets

By Jennifer Wilson One of your students is asked, “What are you learning about today in class?” How does your student respond? “Nothing” “Math” “The questions on this worksheet” “Deciding if two figures are congruent”...

## Warm-up Routines With a Purpose

By Kristin Gray As a teacher, curiosity around students’ mathematical thinking was the driving force behind the teaching and learning in my classroom. To better understand what they were thinking, I needed to not only have...

## Adapting Problems to Elicit Student Thinking

By Jody Guarino As a teacher, I constantly wonder how I can elicit student thinking in order to gain insight into the current thinking of my students and leverage their thoughts and ideas to build mathematical...

## A Fraction Unit Does Not Always Begin With Lesson 1

By Jared Gilman As I sat down at my local coffee shop to plan my upcoming 5th grade unit on fractions, a wave of dread spread across my body. I started having flashbacks to last winter, when my students’ frustrations with...

## Why is the graph of a linear function a straight line?

By William McCallum In my last post I wrote about the following standard, and mentioned that I could write a whole blog post about the first comma. 8.F.A.3. Interpret the equation $y = mx + b$ as defining a linear function,...

## Why We Don’t Cross Multiply

By Kate Nowak (co-authored with Kristin Gray) “Ultimately, the goal of this unit is to prepare students to make sense of situations involving equivalent ratios and solve problems flexibly and strategically, rather than to...

## The Illustrative Mathematics Team Reflect on the 5 Practices

The entire Illustrative Mathematics team spends a lot of time reading about teaching and learning. Most recently, we have been reading—some of us rereading—and reflecting on the 5 Practices for Orchestrating Productive...

## Using the 5 Practices with Instructional Routines

By Robin Moore As a coach, how can I help teachers structure their lesson-planning in order for students to unpack their mathematical understandings? This question is always at the forefront of my mind as I reflect on my...

## Vocabulary Decisions

By Bowen Kerins A wide-ranging team worked together to develop the Illustrative Mathematics Grades 6–8 Math curriculum. Many of the authors were and are experienced teachers of Grades 6–8, while others are experienced high...

## How the 5 Practices Changed my Instruction

By Alicia Farmer I am the type of teacher you want on your teaching team. I am the person that can remember vast amounts of details, predict potential obstacles, and meet any and all deadlines. My organized personality is...

## The 5 Practices Framework: Explicit Planning vs Explicit Teaching

“Whether we’re asking students to analyze a historical event, reflect on a text, or work toward a scientific discovery, we need to give students a chance to dig into the ideas on their own first.” By Kristin Gray I’ve come...

## Not all contexts have the same purpose

By Nik Doran We sometimes use familiar contexts to understand new mathematical ideas, and sometimes we use familiar mathematical ideas to understand what is going on in a context. We do both of these things by looking for...

## Welcome to the new Illustrative Mathematics blog!

In continually moving forward with our vision of creating a world where learners know, use and enjoy mathematics, the Illustrative Mathematics team is so excited to announce the launch of our official blog! Our blog will be...

## Info Gap Cards: The Hidden Gem

By Sadie Estrella May 2016 seems so long ago. I actually had to look it up on a calendar because I really thought it was more than 1.41666years ago. That was when I officially started this journey with Illustrative...

## Fraction & Decimal Number Lines

By Kristin Gray Recently, our 3rd, 4th, and 5th grade teachers had the opportunity to chat math for 2 hours during a Learning Lab held on a professional development day. It was the first time we had done a vertical lab and...

## Respecting the Intellectual Work of the Grade

By Kate Nowak A thing that I think we did really well in Illustrative Mathematics 6–8 Math was attend carefully to really deep, important things that adults that already know math can easily overlook. For example,...

## Assessment Principles in Illustrative Mathematics 6-8 Math

By Bowen Kerins A wide-ranging team worked together to develop the Illustrative Mathematics Grades 6-8 Math curriculum. As Assessment Lead, it was my responsibility to write and curate the Shared Understandings...

## Reflection & Discussions in Grade 8, Part 1

By Ashli Black Woo, blogging! As I start work on high school curriculum, I thought I would go back and revisit the grade 8 units that I’ve spent the past 18 months working on and share some of my favorite things. This gives...

## Fraction division part I: How do you know when it is division?

By William McCallum and Kristin Umland In her book Knowing and Teaching Elementary Mathematics, Liping Ma wrote about this question and how teachers responded to it: Write a story problem for $1 ¾ \div ½$. [Pause here and...

## Truth and consequences: talking about solving equations

By William McCallum The language we use when we talk about solving equations can be a bit of a minefield. It seems obvious to talk about an equation such as $3x + 2 = x + 5$ as saying that $3x+2$ is equal to $x + 5$, and...

## Ways of thinking and ways of doing

By William McCallum Somewhere back in days of Facebook fury about the Common Core there was a post from an outraged parent whose child had been marked wrong for something like this: $$ 6 \times 3 = 6 + 6 + 6 = 18. $$...

## Misconceptions about Multiple Methods

By William McCallum You may have noticed that I am back to publishing regular blog posts! My goal for now is a blog post every second Wednesday. I am now also trying to answer forum questions promptly. I want to thank the...

## The Structure is the Standards

Co-authored by Bill McCallum, Jason Zimba, Phil Daro You have just purchased an expensive Grecian urn and asked the dealer to ship it to your house. He picks up a hammer, shatters it into pieces, and explains that he will...