*By William McCallum*

The language we use when we talk about solving equations can be a bit of a minefield. It seems obvious to talk about an equation such as $3x + 2 = x + 5$ as saying that $3x+2$ is equal to $x + 5$, and that’s probably a good place to start. But there is a hidden assumption in there that the equation is true. In the Illustrative Mathematics middle school curriculum coming out this month we start students out with hanger diagrams to represent such equations: Continue reading “Truth and consequences: talking about solving equations”