What is right about wrong answers?

When I first started teaching, at the end of each day, I would open my teacher’s guide, grab my pen, and thumb through the stack of completed worksheets. My eyes would dart quickly from the red answers in the teacher’s guide to the corresponding answers on each student’s page. I would dole out my x’s and checks with finality and authority. When I got to the end of a page, I would tally a percentage score and enter it into my electronic grade book. I approached every piece of student work as if it were a summative assessment.

Continue reading “What is right about wrong answers?”

What I Learned Today: Scale Drawings & Maps

I asked my 15-year-old what she learned today at school. She paused for a moment and then answered,  “What did you learn at school today?”

It took me a while to think about what I had learned (which will make me more patient when I ask her again tomorrow), and then I remembered and shared with her:We are working with some teachers who are using the Illustrative Mathematics 6–8 Math curriculum. The 7th grade teachers are in Unit 1, Scale Drawings. They are working with scale drawings and maps. Today I learned to look more closely at the scale given for a map.

Continue reading “What I Learned Today: Scale Drawings & Maps”

Building a Supportive Home/School Partnership

FAMILY NIGHT DOWNLOADABLE

 

By Kristin Gray, Jenna Laib, Sarah Caban

Open House. Back-to-School Night. Family Welcome. Math Night. No matter what the name of the event that launches the school year, family members will arrive at your school with the same burning questions: What do I need to know to set up my child up for success in math this year? and How can I continue to support them throughout the school year? Continue reading “Building a Supportive Home/School Partnership”

Building a Mathematical Classroom Community

Classroom environments that foster a sense of community that allows students to express their mathematical ideas—together with norms that expect students to communicate their mathematical thinking to their peers and teacher, both orally and in writing, using the language of mathematics—positively affect participation and engagement among all students.

Principles to Action, NCTM

The beginning of the school year offers teachers and students a fresh start full of exciting possibilities. From the first day of class, as we begin to learn about each of the students in front of us, we have the opportunity to set the stage for how learning math will look, sound, and feel throughout the year. We also begin to foster the attitudes and beliefs that are important in shaping a mathematical classroom community in which each and every student is positioned as a capable learner and doer of mathematics, truly believes their voice is valued and heard, and understands that we learn math by doing deep and meaningful mathematics together. Building this classroom community requires a purposeful process that takes time and careful attention. Continue reading “Building a Mathematical Classroom Community”

The Intersection of Fraction Talks and Clothesline Math: Formative Assessment and the 5 Practices

By Jenna Laib

My sixth graders are weary of pre-assessments.

No matter how many times we discuss the goal of a pre-assessment–for me to learn more about their current strategies and understandings, so that I can design learning experiences that fit them better–all of them seem to want to impress me with perceived “perfection.” (As flattering as this is, they are missing the point.) Continue reading “The Intersection of Fraction Talks and Clothesline Math: Formative Assessment and the 5 Practices”

The IM 6–8 Math Curriculum Changed My Math Methods Experience

By Anna Polsgrove

When I first started the Math Methods course at University of California, Irvine, all of my ideas on how to learn math took a complete 180.

During the first two months, a million questions swirled in my head as I worked through problems with my classmates: We don’t just teach the algorithm anymore? What do you mean “use representations to build conceptual understanding”? What is an area diagram? What are all of the multiple strategies to solve a problem? How am I supposed to anticipate misconceptions when I have never taught the curriculum?, just to name a few. Continue reading “The IM 6–8 Math Curriculum Changed My Math Methods Experience”

Up ↑