Inviting Students to the Mathematics

How do we invite students to the mathematics, and explicitly signal to kids that they have ideas that matter in math class?

In this series of blog posts, the first of which is available here, we’re exploring how, in order to be successful in a problem-based classroom, students have to shift their thinking about what being a good math student looks and sounds like. What do you notice about your own students’ beliefs about how they should participate? What are you curious about now, as you think about what it takes for students to be successful in a problem-based classroom?

Continue reading “Inviting Students to the Mathematics”

How Do Students Perceive Problem-Based Learning?

Does problem-based learning mean students need to forget everything they knew about how to act in math class?

As a teacher, and then as a coach and teacher-educator, I’ve been thinking for a long time about the shifts teachers need to make when using a problem-based curriculum like the IM Math curricula. Recently, though, I’ve gotten to be in classrooms not as a coach or a teacher, but just to observe. Sitting with the students, experiencing math class from their perspective, I’ve been reflecting a lot on the demands placed on them as learners in a problem-based setting.

Continue reading “How Do Students Perceive Problem-Based Learning?”

Planning Lessons for a Block Schedule

Jennifer Wilson and Vanessa Cerrahoglu

Having an extended period of time to teach a lesson can be an advantage in a problem-based classroom. Students and teachers can savor the questions that are asked. Activities can breathe in a way that they can’t in a shorter period of time. But questions about planning inevitably arise. We find ourselves asking questions like: Do I simply merge two lessons? What stays? What goes? How do we ensure that we engage our students in the right conversations that will prepare them for the next leg of the journey?

Continue reading “Planning Lessons for a Block Schedule”

What is problem-based instruction?

By William McCallum

When I was a child, I used to get puzzle books out of the library. One of the puzzles was the twelve-coin problem, the most difficult of all coin weighing problems. My mother and I worked on it separately at the same time, and she solved it first. Some time later that evening she came into my room to find me in tears of frustration. Instead of helping me, she asked: “Do you want me to tell you the solution?” I said no and she left. I will never forget the joy when I finally figured it out.

Continue reading “What is problem-based instruction?”

Why is 3 – 5 = 3 + (-5)?

You will never have to subtract again.

Students sometimes learn about addition and subtraction of integers using integer chips. These are circular chips, with a yellow chip representing +1 and a red chip representing -1. You start with the all-important rule that $1 + (\text-1) = 0$, so you can add or remove a red-yellow pair without changing the number. To calculate the right hand side of the equation in the title, $3 + (\text-5)$, you put 3 yellow chips together with 5 red chips, then remove 3 red-yellow pairs, leaving 2 red chips. So $3 + (\text-5) = -2$.

Continue reading “Why is 3 – 5 = 3 + (-5)?”

Up ↑